Biological N₂ fixation in the upwelling region off NW Iberian Peninsula: magnitude, relevance and players Víctor Moreira Coello PhD candidate 14 December 2018 Universida_{de}Vigo Supervisors: Beatriz Mouriño Emilio Marañón ### What is biological N₂ fixation? ### What is biological N₂ fixation? ### How to measure biological N₂ fixation? ¹⁵N₂-tracer addition technique (Montoya et al., 1996) ¹⁵N₂ → Organic N OPEN & ACCESS Freely available online # The Contamination of Commercial ¹⁵N₂ Gas Stocks with ¹⁵N-Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements Richard Dabundo^{1*}, Moritz F. Lehmann², Lija Treibergs¹, Craig R. Tobias¹, Mark A. Altabet³, Pia H. Moisander⁴, Julie Granger¹ ### Nitrogenase gene #### Nitrogenase enzyme complex $$N_2$$ + 8H⁺ + 8e⁻ + 16ATP \rightarrow 2NH₃ + H₂ + 16ADP + 16P_i ### Diversity of N₂-fixing microorganisms ■ Trichodesmium sp. Diatom-Diazotroph Associations (DDAs) Rhizosolenia-Richelia Hemiaulus-Richelia Chaetoceros-Calothrix ### Diversity of N₂-fixing microorganisms • Unicellular cyanobacteria: Group B (UCYN-B) Group C (UCYN-C) Non-cyanobacterial diazotrophs - Heterotrophic bacteria (Proteobacteria, etc.) - Archaea ### Oceanic N₂ fixation domain ### Oceanic N₂ fixation domain ### Oceanic N₂ fixation domain Large diazotroph diversity #### Wide distribution ### Evidences of N₂ fixation in N-rich waters Large diazotroph diversity (Fernández et al., 2015) - Wide distribution - N₂ fixation in N-rich temperate, cold and upwelling regions ### Evidences of N₂ fixation in N-rich waters ### NW Iberian upwelling system # Hypotheses and objectives ### Hypotheses - 1) 15 N-labeled contaminants yield significant overestimations in biological N_2 fixation. - 2) N₂ fixation represents a minor input of new N in the upwelling region off Northwestern Iberia. - 3) Contrasting hydrodynamic forcing induces variability in diazotrophic community composition. ### Objectives - l) To test the assimilation of ^{15}N -contaminants by non-diazotroph organisms, and to determine the potential overestimation of N_2 fixation rates. - 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply. - 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition. ## Sampling ## Sampling | 15 samplings | | |--------------|--------| | 2014 | 2015 | | 19 Feb | l4 Apr | | 18 Mar | 12 May | | 15 Apr | ll Jun | | 27 May | 22 Jul | | 19 Jun | 3 Sep | | l6 Jul | 19 Nov | | 4 Sep | 16 Dec | | 17 Dec | | ### Hydrographic measurements - Vertical CTD casts - Microstructure turbulence (MSS profiler): $K_z = e \frac{\varepsilon}{N^2}$ - Inorganic nutrients: $\frac{d[nutrient]}{dz}$ MSS profiler ### Hydrographic measurements - Vertical CTD casts - Microstructure turbulence (MSS profiler): $K_z = e \frac{\varepsilon}{N^2}$ - Inorganic nutrients: $\frac{d[nutrient]}{dz}$ - Diffusive fluxes: $Flux_{nutrient} = \overline{K_z} \times \frac{d[nutrient]}{dz}$ ### Biological measurements - Chlorophyll a (spectrofluorometric method) - Picoplankton community composition (flow cytometry) - Primary production (¹⁴C-uptake) - Biological N₂ fixation rates (¹⁵N₂-uptake) < 10 μn - Contamination tests | 15 samplings | | |--------------|--------| | 2014 | 2015 | | 19 Feb | 14 Apr | | 18 Mar | 12 May | | 15 Apr | 11 Jun | | 27 May | 22 Jul | | 19 Jun | 3 Sep | | 16 Jul | 19 Nov | | 4 Sep | 16 Dec | | 17 Dec* | | Dabundo et al. (October 2014) Contaminated ¹⁵N₂ gas bottle ### Determining the potential overestimation of N₂ fixation How? Comparing N₂ fixation rates at 0 m and 70 m depth ## Testing the susceptibility of ¹⁵N-contaminants to assimilation by non-diazotrophs How? *Tetraselmis suecica* cultures $^{15}\mathrm{N}_2$ gas cylinders Cambridge ### Molecular study of *nifH* gene Diazotroph community diversity Diazotroph abundances CARD-FISH (UCYN-A symbiosis) ### Objectives - 1) To test the assimilation of ¹⁵N-contaminants by non-diazotroph organisms, and to determine the potential overestimation of N₂ fixation rates. - 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply. - 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition. ### ¹⁵N-contaminants uptake by non-diazotrophs ### Determining the potential overestimation of N₂ fixation Overestimation of volumetric N₂ fixation rates by a factor of 16 ### Consequences of contamination on N₂ fixation rates ### Objectives - 1) To test the assimilation of ¹⁵N-contaminants by non-diazotroph organisms, and to determine the potential overestimation of N₂ fixation rates. - 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply. - 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition. ### Hydrography #### Hydrographic conditions - Downwelling (D): ↑ MLD - Upwelling (U): \uparrow Chl a, \uparrow PP, Bloom - Relaxation (R): surface stratification ### Seasonal and vertical variability of N₂ fixation N₂ fixation by diazotrophs <10 μm (unicellulars) ### Comparing with other studies (Fernández et al., 2015) ### N₂ fixation vs. nitrate eddy diffusion ## Biogeochemical role of N₂ fixation Contribution of N_2 fixation to new N supply <2% (New N supply = NO_3 diffusion + N_2 fixation) # Objectives - 1) To test the assimilation of ¹⁵N-contaminants by non-diazotroph organisms, and to determine the potential overestimation of N₂ fixation rates. - 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply. - 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition. ## Diazotrophic community composition 1276 OTUs (92% nucleotide similarity) # Phylogenetic tree ## Temporal variability of diazotroph community composition ## Temporal variability of diazotroph community composition ## Temporal variability of diazotroph community composition ### Diversity, variability and ecology of UCYN-A sublineages ## Diazotroph abundances (nifH copies L-1) # Diazotroph abundances (nifH copies L-1) ## Ecological niches of diazotrophs Overlapping of the ecological niches by kernel density functions ### Conclusions #### Hypothesis I 15 N-labeled contaminants yield overestimations in N_2 fixation. #### **Conclusion I** - ¹⁵N-labeled contaminants assimilable by non-diazotrophs. - N₂ fixation rates overestimated up to 16-fold. ### Conclusions #### Hypothesis II N₂ fixation represents a minor input of new N in the upwelling region off Northwestern Iberia. #### **Conclusion II** - Low N₂ fixation rates (up to 0.1 nmol N L⁻¹ d⁻¹). - Peaking at surface waters during upwelling and relaxation. - Minor biogeochemical role (<2%). #### Conclusions #### Hypothesis III Contrasting hydrodynamic forcing induces variability in diazotrophic community composition. #### **Conclusion III** - Diazotroph community composition dominated by: - Anaerobic bacteria (36%). - Gammaproteobacteria (28%). - UCYN-A (21%). - Gammaproteobacteria peaked during downwelling. - UCYN-Al and -A2 peaked at surface in upwelling and relaxation. - UCYN-A principal active diazotroph in the region.