Biological N₂ fixation in the upwelling region off NW Iberian Peninsula: magnitude, relevance and players

Víctor Moreira Coello PhD candidate 14 December 2018

Universida_{de}Vigo

Supervisors: Beatriz Mouriño Emilio Marañón

What is biological N₂ fixation?

What is biological N₂ fixation?

How to measure biological N₂ fixation?

¹⁵N₂-tracer addition technique (Montoya et al., 1996)

¹⁵N₂ → Organic N

OPEN & ACCESS Freely available online

The Contamination of Commercial ¹⁵N₂ Gas Stocks with ¹⁵N-Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements

Richard Dabundo^{1*}, Moritz F. Lehmann², Lija Treibergs¹, Craig R. Tobias¹, Mark A. Altabet³, Pia H. Moisander⁴, Julie Granger¹

Nitrogenase gene

Nitrogenase enzyme complex

$$N_2$$
 + 8H⁺ + 8e⁻ + 16ATP \rightarrow 2NH₃ + H₂ + 16ADP + 16P_i

Diversity of N₂-fixing microorganisms

■ Trichodesmium sp.

Diatom-Diazotroph Associations (DDAs)

Rhizosolenia-Richelia

Hemiaulus-Richelia

Chaetoceros-Calothrix

Diversity of N₂-fixing microorganisms

• Unicellular cyanobacteria:

Group B (UCYN-B)

Group C (UCYN-C)

Non-cyanobacterial diazotrophs

- Heterotrophic bacteria (Proteobacteria, etc.)
- Archaea

Oceanic N₂ fixation domain

Oceanic N₂ fixation domain

Oceanic N₂ fixation domain

Large diazotroph diversity

Wide distribution

Evidences of N₂ fixation in N-rich waters

Large diazotroph diversity

(Fernández et al., 2015)

- Wide distribution
- N₂ fixation in N-rich temperate, cold and upwelling regions

Evidences of N₂ fixation in N-rich waters

NW Iberian upwelling system

Hypotheses and objectives

Hypotheses

- 1) 15 N-labeled contaminants yield significant overestimations in biological N_2 fixation.
- 2) N₂ fixation represents a minor input of new N in the upwelling region off Northwestern Iberia.
- 3) Contrasting hydrodynamic forcing induces variability in diazotrophic community composition.

Objectives

- l) To test the assimilation of ^{15}N -contaminants by non-diazotroph organisms, and to determine the potential overestimation of N_2 fixation rates.
- 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply.
- 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition.

Sampling

Sampling

15 samplings	
2014	2015
19 Feb	l4 Apr
18 Mar	12 May
15 Apr	ll Jun
27 May	22 Jul
19 Jun	3 Sep
l6 Jul	19 Nov
4 Sep	16 Dec
17 Dec	

Hydrographic measurements

- Vertical CTD casts
- Microstructure turbulence (MSS profiler): $K_z = e \frac{\varepsilon}{N^2}$
- Inorganic nutrients: $\frac{d[nutrient]}{dz}$

MSS profiler

Hydrographic measurements

- Vertical CTD casts
- Microstructure turbulence (MSS profiler): $K_z = e \frac{\varepsilon}{N^2}$
- Inorganic nutrients: $\frac{d[nutrient]}{dz}$
- Diffusive fluxes: $Flux_{nutrient} = \overline{K_z} \times \frac{d[nutrient]}{dz}$

Biological measurements

- Chlorophyll a (spectrofluorometric method)
- Picoplankton community composition (flow cytometry)
- Primary production (¹⁴C-uptake)
- Biological N₂ fixation rates (¹⁵N₂-uptake)

 < 10 μn

- Contamination tests

15 samplings	
2014	2015
19 Feb	14 Apr
18 Mar	12 May
15 Apr	11 Jun
27 May	22 Jul
19 Jun	3 Sep
16 Jul	19 Nov
4 Sep	16 Dec
17 Dec*	

Dabundo et al. (October 2014)

Contaminated ¹⁵N₂ gas bottle

Determining the potential overestimation of N₂ fixation

How? Comparing N₂ fixation rates at 0 m and 70 m depth

Testing the susceptibility of ¹⁵N-contaminants to assimilation by non-diazotrophs

How? *Tetraselmis suecica* cultures

 $^{15}\mathrm{N}_2$ gas cylinders

Cambridge

Molecular study of *nifH* gene

Diazotroph community diversity

Diazotroph abundances
 CARD-FISH (UCYN-A symbiosis)

Objectives

- 1) To test the assimilation of ¹⁵N-contaminants by non-diazotroph organisms, and to determine the potential overestimation of N₂ fixation rates.
- 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply.
- 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition.

¹⁵N-contaminants uptake by non-diazotrophs

Determining the potential overestimation of N₂ fixation

Overestimation of volumetric N₂ fixation rates by a factor of 16

Consequences of contamination on N₂ fixation rates

Objectives

- 1) To test the assimilation of ¹⁵N-contaminants by non-diazotroph organisms, and to determine the potential overestimation of N₂ fixation rates.
- 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply.
- 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition.

Hydrography

Hydrographic conditions

- Downwelling (D): ↑ MLD
- Upwelling (U): \uparrow Chl a, \uparrow PP, Bloom
- Relaxation (R): surface stratification

Seasonal and vertical variability of N₂ fixation

N₂ fixation by diazotrophs <10 μm (unicellulars)

Comparing with other studies

(Fernández et al., 2015)

N₂ fixation vs. nitrate eddy diffusion

Biogeochemical role of N₂ fixation

Contribution of N_2 fixation to new N supply <2% (New N supply = NO_3 diffusion + N_2 fixation)

Objectives

- 1) To test the assimilation of ¹⁵N-contaminants by non-diazotroph organisms, and to determine the potential overestimation of N₂ fixation rates.
- 2) To describe the seasonal variability of N₂ fixation, and to quantify its role as a mechanism of new N supply.
- 3) To investigate the relationship between variability in hydrodynamic forcing and diazotroph abundance and community composition.

Diazotrophic community composition

1276 OTUs (92% nucleotide similarity)

Phylogenetic tree

Temporal variability of diazotroph community composition

Temporal variability of diazotroph community composition

Temporal variability of diazotroph community composition

Diversity, variability and ecology of UCYN-A sublineages

Diazotroph abundances (nifH copies L-1)

Diazotroph abundances (nifH copies L-1)

Ecological niches of diazotrophs

Overlapping of the ecological niches by kernel density functions

Conclusions

Hypothesis I

 15 N-labeled contaminants yield overestimations in N_2 fixation.

Conclusion I

- ¹⁵N-labeled contaminants assimilable by non-diazotrophs.
- N₂ fixation rates overestimated up to 16-fold.

Conclusions

Hypothesis II

N₂ fixation represents a minor input of new N in the upwelling region off Northwestern Iberia.

Conclusion II

- Low N₂ fixation rates (up to 0.1 nmol N L⁻¹ d⁻¹).
- Peaking at surface waters during upwelling and relaxation.
- Minor biogeochemical role (<2%).

Conclusions

Hypothesis III

Contrasting hydrodynamic forcing induces variability in diazotrophic community composition.

Conclusion III

- Diazotroph community composition dominated by:
 - Anaerobic bacteria (36%).
 - Gammaproteobacteria (28%).
 - UCYN-A (21%).
- Gammaproteobacteria peaked during downwelling.
- UCYN-Al and -A2 peaked at surface in upwelling and relaxation.
- UCYN-A principal active diazotroph in the region.

