Universida_{de}Vigo

Control of the structure of marine picoplankton communities by turbulence and nutrient supply dynamics

Grupo de

Oceanografía Biolóxica

PhD candidate: Jose Luis Otero Ferrer

Supervisors: Beatriz Mouriño Pedro Cermeño

Introduction

The importance of phytoplankton

MODIS Science Team

INTRODUCTION

Phytoplankton and the biological carbon pump

 $H_2PO_4 + 16NO_3^- + 106CO_2 + 122H_2O \leftrightarrow (C_{106}H_{263}O_{110}N_{16}P_1) + 138O_2$

INTRODUCTION

Relevance of nitrogen and supply mechanisms

Relevance of nitrogen and supply mechanisms

Turbulence effects over biological data

Biological spatial scales

Physical spatial scales

Modified from Prairie et al. (2012)

How is turbulence measured?

Microstructure shear sensor

CTD

Microstructure turbulence profiler (MSS)

Microstructure shear sensor

Disipation rate of turbulent kinetic energy (E).

CTD

Brunt–Väisälä frequency (N).

Microstructure turbulence profiler (MSS)

Microstructure shear sensor

Disipation rate of turbulent kinetic energy (E).

CTD

Brunt–Väisälä frequency (N).

Vertical diffusivity (K_z):

$$Kz = 0.2 \frac{\varepsilon}{N^2}$$

Osborn (1980)

Nutrient stock and nutrient flux

Nutrient stock and nutrient flux in Atlantic Ocean

The variability in nutrient stock **can be disconnected** from changes in nutrient supply (Mouriño-Carballido *et al.* 2011)

Competition dynamics

INTRODUCTION

Villamaña et al., 2019

Why picoplankton?

- The most abundant organisms in the ocean
- Picophytoplankton often dominate primary production in gyres
- Expected future expansion of gyres area in a future ocean scenario

Which groups do picoplankton include ?

Bacterioplankton	<u>Cyanobacteria</u>	<u>Picoeukaryotes</u>
LNA	Prochorococcus	
HNA	Synechococcus	

Environmental control factors in the distribution of picophytoplankton

Environmental control factors in the distribution of picophytoplankton

Temperature

Light

BACKGROUND

Environmental control factors in the distribution of picophytoplankton

Temperature

Temperature & Light are the main control factors of the regional distributions of both *Prochlorococcus* and *Synechococcus* (Flombaum *et al.*, 2013).

Light

Environmental control factors in the distribution and activity of picoplankton

Reproduced from Mouriño-Carballido et al. (2016)

Biogeochemical implications of picoplankton

- Aggregation (Richardson & Jackson, 2007):
 - Avaliable for copepods (fastsinking fecal pellets).
 - Increase sinking velocity
 - Southern ocean (Lomas & Moran, 2011):
 - Pico and nanoplankton export 33±27% of the total carbon

Guidi et al, 2016

Hypothesis and objectives

Hypothesis

Nutrient supply dynamics (constant versus variable supply) controls the structure of marine picoplankton communities.

Objectives

- 1. To **quantify** the role of **temperature**, **light**, and **nitrate fluxes** as factors controlling the distribution of autotrophic and heterotrophic picoplankton subgroups.
- To describe the ecological niches of the various components of the picoplankton community.
 - . To explore the effect of nitrate supply dynamics on the competitive dynamics of two model marine picophytoplankton species, namely, the cyanobacterium *Synechococcus* sp. and the picoeukaryote *Micromonas pusilla*.
- 4. To build a prediction model and obtain the first **climatology** of **nitrate diffusion** into the **euphotic zone**.
- 5. To **predict** the change in the structure of **picophytoplankton communities** (the cyanobacteria to picoeukaryotes ratio) in a **future ocean scenario**.

Research approach

Chapter II: Factors controlling picoplankton community structure

Objectives

- 1. To **quantify** the role of **temperature**, **light**, and **nitrate fluxes** as factors controlling the distribution of autotrophic and heterotrophic picoplankton subgroups.
 - . To **describe** the **ecological niches** of the various components of the **picoplankton community**.
 - To explore the effect of nitrate supply dynamics on the competitive dynamics of two model marine picophytoplankton species, namely, the cyanobacterium *Synechococcus* sp. and the picoeukaryote *Micromonas pusilla*.
- 4. To build a prediction model and obtain the first **climatology** of **nitrate diffusion** into the **euphotic zone**.
- 5. To **predict** the change in the structure of **picophytoplankton communities** (the cyanobacteria to picoeukaryotes ratio) in a **future** global change **scenario**.

Dataset of biological & physical data (2006-2015)

- ❑ Vertical dissipation rate (Kz)
- Nutrients
- □ PAR (Satellite)
- Picoplankton biomass (Cytometry)

Nitrate diffusive flux

Nitrate diffusive flux

Nitrate advective flux

- MATERIAL & METHODS

CHAPTER II

Nitrate advective flux

Analysis

Analysis

Generalized Additive Models (GAM)

 $yj = I + s(SST) + s(PAR) + s(log(NO_3Flux)) + Error$
Analysis

Generalized Additive Models (GAM)

 $yj = I + s(SST) + s(PAR) + s(log(NO_3Flux)) + Error$

Variability in NO₃ flux, control factors and biomass

Relevance of control factors in biomass groups (GAM)

Relevance of control factors in biomass groups (GAM)

Niche partitioning

Niche partitioning

Chapter III: *Micromonas pusilla* and *Synechococcus* competition under constant and dynamic conditions

Dominance of picoplankton groups vs mixing and NO₃

Objectives

- 1. To **quantify** the role of **temperature**, **light**, and **nitrate fluxes** as factors controlling the distribution of autotrophic and heterotrophic picoplankton subgroups.
 - To **describe** the **ecological niches** of the various components of the **picoplankton community**.
- 3. To explore the **effect** of **nitrate supply dynamics** on the competitive dynamics of two model marine picophytoplankton species, namely, the cyanobacterium *Synechococcus* sp. and the picoeukaryote *Micromonas pusilla*.
- 4. To build a prediction model and obtain the first climatology of nitrate diffusion into the euphotic zone.
- 5. To **predict** the change in the structure of **picophytoplankton communities** (the cyanobacteria to picoeukaryotes ratio) in a **future** global change **scenario**.

Steady state and chemostats

Competition experiments

Population monitoring was carried using Flow Cytometry

Experimental design

Groups

□ Synechococcus (RCC-2366)

□ Micromonas pusilla (RCC-450)

Yearly average surface chlorophyll-a

Experimental design

Groups

Synechococcus (RCC-2366)

□ Micromonas pusilla (RCC-450)

- Fully-aclimated populations
 - □ Modified PCRS-11 medium (N:P, 5-1)
 - \Box Light: 100 μ E
 - ☐ Temperature: 21°C
 - □ Steady-state (Dilution rate: 0.2 d⁻¹)

Perturbation(5 µM NO₃)

- \Box 0.5 pulses d⁻¹
- \Box 1 pulses d⁻¹*
- \Box 2 pulses d⁻¹
- \Box 3 pulses d⁻¹

Yearly average surface chlorophyll-a

Sartorius Biostat Plus

Uptake experiments

Similar light and temperature conditions
Short NO₃ incubations (Bulk concentration)
[NO₃]: 0.5, 1, 1.5, 2.5, 5, 10, 25 μM.
Gentle filtration (Ø 0.45 μm)

Uptake experiments

Similar light and temperature conditions
Short NO₃ incubations (Bulk concentration)
[NO₃]: 0.5, 1, 1.5, 2.5, 5, 10, 25 μM.
Gentle filtration (Ø 0.45 μm)

Ecological modelling and calibration

- Droop model
- Delayed Rejection Adaptative Metropolis Algorithm (DRAM):
 - Uptake and batch experiments parameters used as initial parameters.
 - Use one experiment to calibrate and use the other 3 to test.

Competition experiments – Time series

Competitive exclusion rate

Modelling - Calibration

Modelling - Calibration

Modelling - Calibration

Competition experiments - Modelling

Chapter IV: Climatology of the vertical nutrient supply and future cyanobacteria to picoeukaryotes ratio

Objectives

- 1. To quantify the role of temperature, light, and nitrate fluxes as factors controlling the distribution of autotrophic and heterotrophic picoplankton subgroups.
 - . To describe the ecological niches of the various components of the picoplankton community.
 - . To explore the effect of nitrate supply dynamics on the competitive dynamics of two model marine picophytoplankton species, namely, the cyanobacterium *Synechococcus* sp. and the picoeukaryote *Micromonas pusilla*.
- To build a prediction model and obtain the first climatology of nitrate diffusion into the euphotic zone.
- 5. To **predict** the change in the structure of **picophytoplankton communities** (the cyanobacteria to picoeukaryotes ratio) in a **future ocean scenario**.

Dataset of microstructure turbulence (2006-2015)

16 cruises; 181 stations

- □ 181 Microturbulence (MST, 0-300 m)
- □ Nitrate concentration (0-200 m):
 - □ 172 Observations
 - □ 6 WOA09 database
 - □ 3 Nitrate-density relationship

Multivariable fractional polynomial method (MFP)

Independent variables

Stratification	Nitrate	Chlorophyll-a
SST	sNO ₃	DCM
SSS	nitraD	maxChl-a
MLD	grNO ₃	sChl-a
$maxN^2$		
dmaxN ²		
avrN ²		

MFP algorithm

Future scenario (2100)

Lewandowska et al., 2014

Future scenario (2100)

Future scenario (2100)

Variability in NO₃ gradient, K, NO₃ flux and sChl-*a*

Collinearity in the dataset

Collinearity in the dataset

Collinearity in the dataset

Multivariable fractional polynomial method (MFP)

	R ² -adj	AIC
Tropical and subtropical		
FNO ₃ = f(grNO₃ , SSS, sNO ₃ , avrN ₂)	0.75	143
FNO ₃ = f(grNO₃, SST)	0.41	189
NW Mediterranean		
$FNO_3 = f(avrN_2)$	0.68	72
FNO ₃ = f(SST, sChla)	0.64	77
NW Galician upwelling		
FNO ₃ = f(grNO₃, maxChla)	0.64	77
FNO ₃ = f(grNO 3)	0.51	110
Antartic		
<i>FNO</i> ₃ = <i>f</i> (SST)	0.75	38
Global		
FNO ₃ = f(SST, grNO3, sChla , DCM)	0.55	545
FNO₃= f(SST, grNO3, sChla)	0.52	553

Multivariable fractional polynomial method (MFP)

	R ² -adj	AIC	
Tropical and subtropical			
FNO ₃ = f(grNO 3, SSS, sNO3, avrN2)	0.75	143	
FNO3= f(grNO3, SST)	0.41	189	
NW Mediterranean			
$FNO_3 = f(avrN_2)$	0.68	72	
FNO₃= f(SST, sChla)	0.64	77	
NW Galician upwelling			
FNO ₃ = f(grNO 3, maxChla)	0.64	77	
FNO ₃ = f(grNO 3)	0.51	110	
Antartic			
FNO ₃ = f(SST)	0.75	38	
Global			
FNO₃= f(SST, grNO3, sChla , DCM)	0.55	545	
FNO₃= f(SST, grNO3, sChla)	0.52	553	
Prediction of NO₃ turbulent diffusion

SST from WOA13

grNO₃ from WOA13

sChla from Globecolour (1998-2017)

Prediction of NO₃ turbulent diffusion + observations

Log₁₀ Flux NO₃

Prediction of NO₃ diffusion for $40^{\circ}N - 40^{\circ}S$

Log₁₀ Flux NO₃

 NO_3 Flux < 1 mmol m⁻² d⁻¹ sChl-a < 1 mg m⁻³

- **RESULTS**

CHAPTER IV

Relevance of diffusive nitrogen fluxes in tropical and subtropical areas

¹This study

Relevance of diffusive nitrogen fluxes in tropical and subtropical areas

¹This study ²Fernández-Castro et al. (2015)

¹This study ²Fernández-Castro et al. (2015) ³Carpenter & Capone (2008) ⁴Okin *et al.* (2011)

¹This study ²Fernández-Castro et al. (2015) ³Carpenter & Capone (2008) ⁴Okin *et al.* (2011) ⁵NPP(Uitz et al, 2008)
20% ratio phyto respiration to GP (Geider, 1992)
23% DOC production (Teira et al, 2001)
Variable stoichiometry (Galbraith & Martiny, 2015)

¹This study ²Fernández-Castro et al. (2015) ³Carpenter & Capone (2008) ⁴Okin *et al.* (2011) ⁵NPP(Uitz et al, 2008)
20% ratio phyto respiration to GP (Geider, 1992)
23% DOC production (Teira et al, 2001)
Variable stoichiometry (Galbraith & Martiny, 2015)

Present and future of cyanoB/pEuk ratio

Present and future of cyanoB/pEuk ratio

2100

OBJECTIVE I

To quantify the role of temperature, light, and nitrate fluxes as factors controlling the

distribution of autotrophic and heterotrophic picoplankton subgroups.

OBJECTIVE I

To **quantify** the role of **temperature**, **light**, and **nitrate fluxes** as factors controlling the distribution of autotrophic and heterotrophic picoplankton subgroups.

CONCLUSION I

Temperature and **nitrate supply** were **more relevant than light** in predicting the biomass of most picoplankton subgroups, except for *Prochlorococcus* and low-nucleic-acid (LNA) prokaryotes, for which irradiance also played a significant role.

OBJECTIVE II

To describe the ecological niches of the various components of the picoplankton community.

OBJECTIVE II

To **describe** the **ecological niches** of the various components of the **picoplankton community**.

CONCLUSION II y III

Prochlorococcus and LNA prokaryotes were more abundant in warmer waters where the nitrate fluxes were low, *Synechococcus* and high-nucleic-acid (HNA) bacteria prevailed in cooler environments characterized by intermediate or high levels of nitrate supply, and finally the niche of picoeukaryotes was defined by low temperatures and high nitrate supply.

Nitrate supply was the only factor that allowed the distinction among the ecological niches of all autotrophic and heterotrophic picoplankton subgroups.

OBJECTIVE III

To explore the **effect** of **nitrate supply dynamics** on the competitive dynamics of two model marine picophytoplankton species, namely, the cyanobacterium *Synechococcus* sp. and the picoeukaryote *Micromonas pusilla*.

OBJECTIVE III

To explore the **effect** of **nitrate supply dynamics** on the competitive dynamics of two model marine picophytoplankton species, namely, the cyanobacterium *Synechococcus* sp. and the picoeukaryote *Micromonas pusilla*.

CONCLUSION IV, V y VI

Nitrate supply dynamics controlled the outcome of competition between the cyanobacterium *Synechococcus* and the picoeukaryote *M. pusilla*.

Under continuous nitrate limitation conditions (steady-state), *M. pusilla* was outcompeted by *Synechococcus sp.*, the result of the competition was reversed in nutrient supply dynamics scenarios.

The rate of competitive exclusion of *Synechococcus* was a linear function of the frequency of nitrate pulses, demonstrating that there is a window of opportunity for the coexistence of both species.

OBJECTIVE IV

To build a prediction model and obtain the first **climatology** of **nitrate diffusion** into the **euphotic zone**.

OBJECTIVE IV

To build a prediction model and obtain the first **climatology** of **nitrate diffusion** into the **euphotic zone**.

CONCLUSION VII y VIII

A model including **three predictors** (surface temperature, nitrate vertical gradient, and surface chlorophyll-*a*) **explained 57%** of the **variance** in the nitrate diffusive flux.

Average nitrate diffusion for oligotrophic regions between 40° N- 40° S (~20 Tmol N y⁻¹) was comparable to the sum of global estimates of nitrogen fixation, fluvial fluxes and atmospheric deposition.

OBJECTIVE V

To **predict** the change in the structure of **picophytoplankton communities** (the cyanobacteria to picoeukaryotes ratio) in a **future** global change **scenario**.

OBJECTIVE V

To **predict** the change in the structure of **picophytoplankton communities** (the cyanobacteria to picoeukaryotes ratio) in a **future** global change **scenario**.

CONCLUSION IX

The predicted **decrease of nitrate supply** in tropical and subtropical areas as the result of global change

(~20%), would produce an increase in the cyanobacteria to picoeukaryotes biomass ratio of 8%.

UniversidadeVigo

Grupo de Oceanografía Biolóxica

THANK YOU FOR YOUR ATTENTION

