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ABSTRACT: An oceanographic cruise was carried out in the subtropical NE Atlantic in April 1999
with the aim of investigating the role of the Azores Current, the STORM (subtropical oceanic rings of
magnitude) cyclonic eddies and the Great Meteor Tablemount in triggering phytoplankton produc-
tion. This information combined with previous studies allowed us to determine the role of these
features in the carbon budget of the photic layer in this oligotrophic region. The results suggest that
mesoscale dynamics, although modifying hydrographic characteristics and phytoplankton spatial
distribution, do not appear to significantly affect primary production in the NE subtropical Atlantic.
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INTRODUCTION

Direct measurements of nutrient supply to oligotrophic
surface waters have been considerably lower than
indirect geochemical estimates in the NW subtropical
Atlantic (Doney 1997). In the NE subtropical Atlantic, net
heterotrophic behaviour has been observed repeatedly
in the photic layer, resulting in an organic carbon deficit
(Duarte et al. 2001, Gonzéalez et al. 2001, Serret et al.
2001, Teira et al. 2001). These observations could be the
result of sampling strategies that tend to underestimate
episodic nutrient inputs generated by events hetero-
geneous over temporal and/or spatial scales (Karl et al.
2003). In support of this hypothesis, several authors have
proposed that mesoscale features could be an important
vehicle for nutrient transport into the photic layers of
open-ocean regions (see review by Gargon et al. 2001).
However, enhanced biological activity associated with
mesoscale dynamics is not persistent in time (Pelaez &
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McGowan, 1986, Sweeney et al. 2003, Mouriho et al.
2004), and recent modelling experiments disagree on the
relevance of eddy-pumping in surface nitrate-depleted
waters (Oschlies 2001, McGillicuddy et al. 2003). This
disagreement could derive from the different temporal
and spatial variability scales involved in the biological
response associated with mesoscale dynamics, scales
that modelling studies have not been able to completely
reproduce so far.

Significant mesoscale activity has been widely re-
ported for the NE subtropical Atlantic (e.g. Rogers
1994, Ferndndez & Pingree 1996, Pingree et al. 1996,
Garcon et al. 2001). However, this region is character-
ized by relatively low eddy energy levels compared
with the NW subtropical Atlantic (Smith et al. 2000),
where substantial evidence indicates that mesoscale
eddies represent the main nutrient input mechanism
into the euphotic layer (McGillicuddy et al. 1998,
McNeil et al. 1999, Siegel et al. 1999).
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Fig. 1. 'Azores II' cruise track of
the '‘BIO Hespérides' in the NE
Atlantic Ocean from Las Palmas
(6 April 1999) to Cartagena
(3 May 1999). (e) CTD stations
(CTD number is indicated); ()
expendable bathythermographs;
frame encloses eastern region of
subtropical North Atlantic con-

sidered in this study (20 to 35°N,
19 to 35°W); AC: Azores Current;

Longitude °W

Representative mesoscale features of the NE sub-
tropical Atlantic were studied during an oceano-
graphic cruise in April 1999. This data was combined
with that of previous studies in the region to determine
the role of mesoscale dynamics in the carbon budget of
the photic layer and to explore the possibility of
regional differences in the relevance of eddy-pumping
in oligotrophic ecosystems.

MATERIALS AND METHODS

We studied 36 stations in the NE subtropical Atlantic
during the ‘Azores II' cruise on board the ‘BIO Hespé-
rides'. The data obtained allowed us to investigate the
physical structure and the potential enhancement of
phytoplankton production and biomass of the Azores
Current/Subtropical Front system (AC/STF) (Gould
1985), large cyclonic eddies budded from the Azores
Current (STORMS; subtropical oceanic rings of magni-
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Leticia: STORM eddy; GMT:
Great Meteor Tablemount. Arrow
indicates path of Azores Current

tude: Pingree et al. 1996) and hydrographic features
associated with the Great Meteor Tablemount (GMT).
The cruise track (Fig. 1) was decided on a daily basis
according to the information derived from expand-
able bathythermographs (XBT), conductivity tempera-
ture depth (CTD) data, and the operational ocean
mesoscale forecasting system SOPRANE (Systeme
Océanique de Prévision Régionale en Atlantique
Nord-Est; see Mourino et al. 2003). Firstly, 2 sections
(Stn 1 to 11 and Stn 12 to 16) crossed the meandering
region of the AC/STF system, then intensive sampling
was conducted in the region centred at 32.4°N to
28.7°W, where a ~20 cm sea-level depression had
been previously detected by SOPRANE. This sea-level
depression was related to a STORM eddy called 'Leti-
cia'. Finally, the 'Hespérides' steamed south towards
30°N and crossed the GMT. Surface temperature and
salinity were continuously monitored by means of a
SBE-21 thermosalinograph. CTD profiles were con-
ducted with a Neil Brown Mark III probe attached to a
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Fig. 2. (A) Surface temperature and (B) salinity in the eastern

part of the North Atlantic in April 1999 during the 'Azores II'

cruise. Dotted lines: interpolated (0.2° interval) positions

considered for the thermosalinograph data; ENACW: Eastern

North Atlantic Central Water; STW: Subtropical Water; other

labelling as in Fig. 1
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rosette equipped with 10 1 Niskin bottles. Samples
were collected on each CTD cast for the determination
of dissolved inorganic nitrogen, dissolved oxygen and
chlorophyll a concentrations. At selected stations, car-
bon incorporation rates by phytoplankton were deter-
mined by on-deck incubations cooled by surface
waters for 7 to 11 h (see details in Mourino et al. 2002).

RESULTS AND DISCUSSION

The surface thermohaline characteristics of the
region in April 1999 are shown in Fig. 2. The position
of the AC (about 34° N) was associated with a marked
gradient in surface temperature and salinity (~2°C and
0.3 psu, respectively) at the frontal boundary between
the Eastern North Atlantic Central Water (ENACW)
and Subtropical Water (STW) on the northern and
southern side of the AC, respectively (Pingree et al.
1996, New et al. 2001). A central core of relatively cold
(<20°C) and less saline (<36.2 psu) water was the main
surface signature of the cyclonic eddy ‘Leticia’. No
surface thermohaline anomalies were associated with
the GMT.

Fig. 3 shows the vertical distribution of sigma-0,
geostrophic velocity (cm s7!), nitrate (uM) and chloro-
phyll a (mg m3) across (A) the AC/STF system, (B)
‘Leticia’ and (C) the GMT. Isopycnals outcropped at
35.0°N defining the position of the STF. Geostrophic
velocities showed the close association between the
STF and the AC, with maximum values (~14 cm s7!) in
the upper 25 m. A sharp nitrate gradient was associ-
ated with the STF. Differences in nitrate concentration
between the northern and southern side of the STF at
100 and 200 dbar were 1.54 and 6.68 pM, respectively.
Chlorophyll a concentration showed a distinct and
continuous subsurface maximum at about 75 dbar
that was slightly shallower and of higher magnitude
(>0.3 mg m~3) at the STF.

The vertical hydrographic structure across ‘Leticia’
showed an upward displacement of isopycnals of more
than 100 m over horizontal scales of ca. 100 km
(Fig. 3B). The STORM eddy rotated cyclonically, with
maximum geostrophic velocities in the upper 200 m
>25 cm s7!. Nitrate concentrations were lower than
0.5 pM at 100 m, except at Stns 19 and 22, where 1.76
and 0.84 pM were measured at this depth, respec-
tively. The deep chlorophyll maximum (DCM) was
located at ca. 100 m, except at the eddy centre, where
it was located shallower (ca. 50 m). Maximum concen-
trations (>0.3 mg m~3®) were measured at Stn 19 (inside
the eddy) and at Stn 17 (outside the eddy).

Isopycnals outcropped over the GMT slope (Fig. 3C).
Geostrophic velocities calculated across the GMT re-
vealed the existence of a southward current of >15 cm
s™! in the upper 200 dbar of the western flank of the
seamount. Surface waters were nitrate depleted, with
concentrations <0.5 pM in the upper 90 m, except at
Stns 30 and 31, where 0.67 and 0.77 ptM were mea-
sured at this depth, respectively. Maximum chloro-
phyll a (chl a) values at the DCM (>0.3 mg m~®) were
observed over the seamount slope.

Fig. 4 shows the vertical distribution of chemical and
biological properties at stations located within the
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Fig. 3. Vertical distribution of sigma-0, geostrophic velocity relative to 2000 m, nitrate and chlorophyll a concentration across (A) the
Subtropical Front, (B) the cyclonic eddy ‘Leticia’ and (C) the Great Meteor Tablemount. (X) photic layer depth (1 % surface irradiance).
Numbers on the top axis represent Station numbers

mesoscale features investigated in this study and in STW
not affected by these mesoscale structures. Averaged
nitrate profiles showed uplifting of the nutricline (0.5 pM,
ca. 30 m) associated with the mesoscale features com-
pared to STW. Although local enhancements of chl a
concentrations were found associated with some stations
located within the mesoscale features (a chl a maximum
of 0.75 mg m~® was measured in GMT versus a maxi-
mum of 0.23 mg m3 in STW), the maximum primary pro-
duction rate was measured in STW (0.31 mgC m3h™}),
and averaged profiles did not show noticeable phyto-

plankton biomass and production increases associated
with the mesoscale features. No noteworthy significant
differences were found in the contribution of small-sized
phytoplankton (<2 pm) to total chl g, their contribution to
carbon incorporation rates being slightly higher within
mesoscale features. Small differences in chl a values be-
tween the vertical sections (Fig. 3) and vertical profiles
(Fig. 4) derive from the different data sets used for both
representations (calibrated fluorescence from CTD in
Fig. 3 and extracted size-fractionated chl a in Fig. 4: see
Mourino et al. 2002).
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Fig. 4. Box-and-whisker plots of (A) nitrate concentration; (B) chlorophyll a concentration; (C) contribution of small-sized phyto-
plankton (<2 pm) to total chlorophyll a; (D) carbon incorporation rates (primary production); and (E) contribution of small-sized
phytoplankton (<2 pm) to total primary production at stations in the Subtropical Front (STF; Stns 9, 10, 14, 15), 'Leticia’ (L, Stns
18, 19, 20/26, 21, 22, 24, 25), the Great Meteor Tablemount (GMT; Stns 30, 31, 32, 33), mesoscale features (STF, L, GMT) and
Subtropical Waters (STW; Stns 23, 28, 34). Boxes represent 50 % of data, and whiskers 10th and 90th percentiles; continuous lines:
average profiles. As samples were collected at different depths, linear interpolated values were used for analysis
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Table 1. Averaged (+SE) values of selected physical, chemical and biological variables at stations in the Subtropical Front (STF;

Stns 9, 10, 14, 15), 'Leticia’ (L; Stns 18, 19, 20/26, 21, 22, 24, 25), the Great Meteor Tablemount (GMT; Stns 30, 31, 32, 33),

mesoscale features (STF, L, GMT) and Subtropical Waters (STW; Stns 23, 28, 34); 150 m integration depth represents the level
where primary production rates were closer to 0. n: number of stations

Variables STF Leticia GMT Mesoscale features STW
Mean SE n Mean SE n Mean SE n Mean SE n Mean SE n

Depth 16°C isotherm 170 25 4 228 20 7 278 5 4 226 15 15 315 18 3

Photic layer—integrated nitrate 24 14 3 22 14 4 41 - 1 25 8 8 10 - 1

concentration (mmol m~2)

Depth (0-150 m)-integrated 15 1 4 13 1 7 13 1 4 14 1 15 12 2 3

chlorophyll a (mg m™?)

Percentage picoplankton, 0-150 m 68 4 4 73 1 7 59 10 4 68 3 15 73 1 3

(<2 pm) chlorophyll a

Depth (0-150 m)-integrated primary 156 44 2 151 36 3 166 52 2 156 17 7 141 13 2

production (mgC m~2d?)

Percentage picoplankton, 0-150 m 55 6 2 61 5 3 59 9 2 59 3 7 54 3 2

(<2 pm) primary production

Similar results were obtained when integrated values
were compared (Table 1). A more than 2-fold increase
in photic depth-integrated nitrate concentration was
found associated with the mesoscale features compared
to STW. Local increments in phytoplankton biomass
and primary production rates were associated with
some stations located within the AC/STF system, 'Leti-
cia' and GMT. However, averaged depth-integrated
chl a and carbon incorporation rates measured at STW
(12 +2mgchl am™2, 141 + 13 mgC m™2 d!) did not dif-
fer significantly (p = 0.42 and p = 0.62, respectively)
from the values obtained in water bodies affected by
mesoscale features (14 + 1 mgchl am™2, 156 + 17 mgC
m~2d™'). Primary production data measured during the
‘Azores II' cruise compare well with the rates measured
in the region in April 2001 (~150 mgC m~2 d"!, Mourifo:
2002). No statistically significant differences (p = 0.43
and p = 0.39, respectively) were found in the contribu-
tion of small-sized phytoplankton (<2 pm) to total chl a
and carbon incorporation rates between STW (73 and
54 %, respectively) and mesoscale features (68 and
59 %, respectively).

The results presented in this study show that the
AC/STF system, the STORM eddies and the GMT,
although modifying hydrographic characteristics of the
water column, did not significantly affect photic layer
productivity in April 1999. We are well aware that this
result cannot be extrapolated over the entire seasonal
cycle. However, indirect estimates allow us to deter-
mine the magnitude of the effect of these mesoscale
features on the total amount of photosynthetic carbon
produced in the subtropical NE Atlantic, suggesting
that this effect is likely to be small.

A previous study conducted in the GMT by Mourino
et al. (2001) showed the existence of local increases
in chl a-enhanced carbon-incorporation rates and
changes in phytoplankton species composition associ-

ated with the seamount. These effects were, neverthe-
less, subject to a large degree of temporal and spatial
variability both at seasonal and shorter time scales. In
order to estimate an upper threshold for the signifi-
cance of seamounts on the primary productivity of the
region, we used for our calculations the highest pri-
mary production rate measured over the GMT by
Mourifio et al. (2001) (441 mgC m™2 d™!). Using this rate
and considering the spatial extension of submarine
banks rising from the ocean bottom to depths shal-
lower than 500 m (<1 % of the region, see Fig. 1, and
htpp://topex.ucsd.edu/marine_topo/mar_topo.html), i.e.
those expected to modify the hydrographic character-
istics of the photic layer, we estimated that the maxi-
mum net primary production associated with the
seamounts in the region was ca. 2 MtC yr L. This value
represents a <1 % increase over the net primary pro-
duction of the region, calculated assuming a surface
area for the whole NE Atlantic subtropical region of
2.6 x 102 m? (see Fig. 1) and the averaged net primary
production rate reported by Maranén et al. (2003)
(264 + 69 mgC m~2 d!) for this region.

Chl a concentrations and primary production rates
measured in the AC/STF region in April 1999 were
considerably lower than those in March 1992, when 2
distinct and isolated chlorophyll patches were identi-
fied related to the boundaries of the STF, and chl a val-
ues, and carbon incorporation rates were 2 to 3 higher
at the frontal boundary than in surrounding waters not
affected by mesoscale features (Ferndndez & Pingree
1996). We first assumed that the maximum primary
production rate measured at the STF in March 1992
(1056 mgC m% d!) remained constant over a 2 mo
period. This agrees well with the period when maxi-
mum surface chl a concentration (see Fig. 17 of Pingree
et al. 1999) and primary production rates (Longhurst
1995) are observed or modelled in the region, but
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probably overestimates the duration of the episodic
event investigated in March 1992. We further assumed
a surface area for the STF of 2.5 x 10'! m?, calculated
considering the STF as a band of ~160 km width from
19 to 35°W (Fernandez & Pingree 1996). The maxi-
mum net primary production associated with the STF
was thus estimated as 16 MtC yr-!. This represents a
5% increase over the annual net primary production
estimated for the whole NE Atlantic subtropical region.

Primary production rates measured in the eddy ‘Leti-
cia' were lower than the average net primary produc-
tion rate reported for the region by Maranén et al.
(2003). 'Leticia’ was probably in the decaying stage of
development (Mourino et al. 2002), and as a conse-
quence, primary production rates measured within this
eddy are likely to be at the lower end of the range
of variability characteristic of STORM eddies. Assum-
ing a 4-fold increase in the primary production rate
characteristic of STORM eddies (a value considerably
higher than the maximum phytoplankton carbon
incorporation rate measured in the region: ~350 mgC
m~2 d!; Marafién et al. 2003), and considering the
mean surface area and lifetime of STORM eddies (esti-
mated by an automatic system for eddy tracking
through the 1993 to 1999 period; Mourifio et al. 2003),
we estimated that the variability in the annual net pri-
mary production associated with STORM eddies
ranged from 1.1 to 7.6 MtC yr~! through the 1993 to
1999 period. This represents a <2% increase in the
total net primary production of the region.

The estimates presented in this study indicate that
the potential enhancement of primary production rates
associated with the mesoscale features investigated
herein may be responsible of <7 % increase in the total
net primary production of the region. However, even
small increases in primary production levels might be
of relevance in terms of carbon export if the magnitude
of the f-ratio were affected. In this respect, a recent
study on the biochemical impacts of mesoscale activity
in the Sargasso Sea reported higher rates of vertical
particle flux and shifts in the size distribution of the
phytoplankton community towards larger species asso-
ciated with the passage of mesoscale eddies (Sweeney
et al. 2003). Unfortunately, information on the potential
capacity for carbon export in the mesoscale features
investigated in this study is scanty and limited to a few
observations. Thus, respiration rates measured in ‘Leti-
cia' in April 1999 were significantly lower inside than
outside the eddy, and hence, in contrast to the net
heterotrophic metabolism measured in the NE sub-
tropical Atlantic, 'Leticia’ data showed a net auto-
trophic microbial O, balance (Gonzalez et al. 2001).

According to the empirical model developed by
Serret et al. (2002) to predict the net metabolism of the
planktonic community from carbon incorporation rates

measured in the NE Atlantic Ocean, a <7 % increase in
total net primary production would mean <10 % reduc-
tion in the organic matter deficit estimated for this
region (388 mgC m2 d™!: Serret et al. 2002). Although
any attempt to quantitatively estimate the increase in
net community production (NCP) rates associated with
the mesoscale features from PO"“CP data would prob-
ably not vyield reliable results, the fact that (1)
mesoscale features are not always associated with
enhanced biological activity (as observed in April
1999) and (2) the combined effect of the 3 mesoscale
regimes investigated in this study on the whole area is
relatively small indicates that the magnitude of the ex-
pected increase in NCP is likely to be very small or
in any case irrelevant compared to the organic matter
deficit estimated for the region. In conclusion, al-
though the mesoscale structures investigated in the NE
subtropical Atlantic in April 1999 significantly modify
phytoplankton spatial distribution, their contribution
to the carbon budget of the photic layer in the region
appears to be limited. This contrasts with results
obtained for the dynamic NW subtropical Atlantic
and points to regional differences in the role of eddy
pumping in subtropical regions.
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