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Previous studies focused on understanding the role of physical drivers on phytoplankton
bloom formation mainly used indirect estimates of turbulent mixing. Here we use weekly
observations of microstructure turbulence, dissolved inorganic nutrients, chlorophyll
a concentration and primary production carried out in the Ria de Vigo (NW Iberian
upwelling system) between March 2017 and May 2018 to investigate the relationship
between turbulent mixing and phytoplankton growth at different temporal scales. In
order to interpret our results, we used the theoretical framework described by the
Critical Turbulent Hypothesis (CTH). According to this conceptual model if turbulence
is low enough, the depth of the layer where mixing is active can be shallower than
the mixed-layer depth, and phytoplankton may receive enough light to bloom. Our
results showed that the coupling between turbulent mixing and phytoplankton growth
in this system occurs at seasonal, but also at shorter time scales. In agreement
with the CTH, higher phytoplankton growth rates were observed when mixing was
low during spring-summer transitional and upwelling periods, whereas low values
were described during periods of high mixing (fall-winter transitional and downwelling).
However, low mixing conditions were not enough to ensure phytoplankton growth, as
low phytoplankton growth was also found under these circumstances. Wavelet spectral
analysis revealed that turbulent mixing and phytoplankton growth were also related
at shorter time scales. The higher coherence between both variables was found in
spring-summer at the ~16-30 d period and in fall-winter at the ~16-90 d period. These
results suggest that mixing could act as a control factor on phytoplankton growth over
the seasonal cycle, and could be also involved in the formation of occasional short-lived
phytoplankton blooms.

Keywords: phytoplankton, turbulent mixing, critical turbulence hypothesis, wavelet analysis, Ria de Vigo, NW
Iberian upwelling system

1. INTRODUCTION

Marine phytoplankton is responsible for about half of the primary production in the biosphere
(Field et al., 1998), and therefore plays a key role in the cycling of matter and energy on Earth.
The two main resources limiting phytoplankton growth, light, and nutrients availability, are
strongly dependent on turbulent mixing conditions in the water column. By controlling the vertical
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red), downwelling (D, in blue), and transition (T4 and Tz, in white).

FIGURE 6 | Wavelet analysis of turbulent layer depth (TLD) and surface phytoplankton growth rates (uo). (A) Wavelet power spectrum (WPS) of TLD, (B) WPS of uo,
and (C) wavelet coherence (I'?) and phase difference (8¢) between TLD and wo. The solid black line indicates the cone of influence inside which the edge effects have
no influence. The black dashed lines denote the 0.05 significance regions. The arrows indicate 8¢ measured with respect to the horizontal axis in the anti-clockwise
direction; e.g., — for 8¢ = 0° and 1 for §¢p = 90°. For simplicity, arrows are only plotted inside the regions where significance was higher than 0.05 and only one
arrow is plotted every eight period-points. The ticks and numbers at the top axis indicate the sampling number and the colors, the periods for upwelling (U and Uz, in

3.4. Relationship Between Turbulent Mixing
and Phytoplankton Growth

We first investigated the relationship between turbulent mixing
and surface phytoplankton growth rate over seasonal scales by
plotting the variability of the TLD and phytoplankton growth
in Figure 5. The annual mode, computed for both variables by
fitting the observations to a sinusoidal curve, showed that in
general maximum growth rates coincided with shallow turbulent
layers, whereas minimum values corresponded to deep turbulent
layers. Similarly, high phytoplankton growth was coincident with
periods of high values of the light and nitrate availability indices,
and vice versa.

In addition to the seasonal mode described above, Figure 5
evidenced the existence of short-term variability both in TLD
and phytoplankton growth. In fact, 44 and 60% of the variance
of TLD and surface growth rates, respectively, were distributed
in periods shorter than 128 d. The wavelet analysis, used to
investigate this shorter-term variability (Figure 6), showed that
TLD variance was larger during the fall transition T, and winter
downwelling through all the periods with maxima at 34 and 91

days (Figure 6A). The variance of surface growth rates displayed
two main components extending mostly during the spring-
summer upwelling U; centered at 26 and 56 days (Figure 6B).
Growth rates at 10 m (Supplementary Figure 2A) exhibited
variance maxima during the spring transition T; (centered at 25
days), and during the fall transition T, and winter downwelling
(109 days period).

The relationship between the variance in TLD and surface
phytoplankton growth rates was investigated via the coherence
(r?) computed using the wavelet analysis (Figure 6C). Also, the
phase difference (§¢) between both signals was calculated to
characterize the delay between the two time-series. The variables
are in phase (8¢ = 0°) when their maxima coincide in time,
whereas they are in phase opposition (§¢ 180°) when the
maximum of one variable coincides with the minimum of the
other, and vice versa. TLD and surface growth rates showed
significant coherence during the end of the spring transitional
T and the beginning of the spring-summer upwelling U; (~16-
30 d period) and from the end of the fall transitional period T,
to the middle of the winter downwelling (~16-90 d periods).
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The highest coherence (I'? > 0.8) occurred for periods ~16-
20 d, for which the averaged phase difference was 145 + 4°.
The coherence between TLD and growth rates at 10 m depth
(Supplementary Figure 2B) was significant during the end of the
spring transitional T; and the beginning of the spring-summer
upwelling U;(~16-56 d period) and from the fall transitional
period T, to the spring upwelling U, with maximum values at
~16 and ~35d.

4. DISCUSSION

As far as we know this study represents the first attempt to
investigate the relationship between mixing and phytoplankton
growth, by using coincident observations of microstructure
turbulence and phytoplankton growth, in a coastal upwelling
system. In general, higher turbulent mixing was observed
during fall-winter transitional and downwelling periods, whereas
weaker mixing corresponded to spring-summer transition
and upwelling. However, this pattern was mainly driven
by the enhanced turbulent diffusivity quantified during two
samplings (36 and 38 sampled on 21 November 2017 and
5 December 2017, respectively). This increase in diffusivity
was mainly due to a decrease in the buoyancy frequency, as
the consequence of the weak vertical gradient observed in
both temperature and salinity. According to the analysis of
hydrographic and current velocity data, these two samplings were
under the influence of fall upwelling conditions. Although this
system is characterized by predominant upwelling conditions
during the spring and summer (Fraga, 1981), previous studies
described the existence of an important short-term variability
in wind conditions, which generates a succession of upwelling-
downwelling episodes in periods of 15 days (Alvarez-Salgado
et al, 1993; Nogueira et al., 1997; Figueiras et al, 2002).
Recently, using direct observations of currents, the mean
duration of these upwelling-downwelling episodes has been
estimated in ~ 3 days (Gilcoto et al, 2017). The vertical
homogenization of the thermohaline conditions, due to the
advection of salty oceanic waters inside the Rias, during fall
upwelling events erodes the frequent haline stratification driven
by increasing precipitation and runoff (Roson et al., 2008), and
enhances mixing.

The seasonality of turbulent mixing in the upper ocean, both
in coastal and open-ocean regions, remains poorly assessed due
to the limited number of microstructure observations spanning
entire annual cycles, such that the limited present knowledge
derived mostly from indirect methods (Whalen et al., 2012;
Warner et al., 2016; Inoue et al., 2017; Evans et al., 2018; Thakur
et al., 2019; Cherian et al., 2020). Previous studies carried out
in this region provided information about the variability of
turbulent diffusivity on short-time scales during specific seasons
(Barton et al., 2016; Villamada et al., 2017; Ferndndez-Castro
et al., 2018; Broullén et al., 2020) or along seasonal scales with
coarser temporal resolution (Cermenio et al., 2016; Moreira-
Coello et al., 2017).

Our results show that surface growth rates, which ranged
from 0.11 to 2.42 d~! (0.008-0.226 h™!), were in general higher

during spring-summer transitional and upwelling periods, and
minimum during fall-winter transitional and downwelling. These
values are consistent with previous estimates determined for
this system, by using a similar methodology, but with coarser
temporal resolution. An early study carried out in the Ria de
Arousa during an upwelling event (Hanson et al., 1986), reported
depth-averaged phytoplankton growth rates ranging from < 0.1
to 1.89 d~! (from < 0.004 to 0.0788 h™!). Cermefio et al.
(2016) estimated slightly lower phytoplankton growth rates at
the same station in the Ria de Vigo (~0.004-0.114 h~!). Our
data, derived from short (2 h) incubations experiments, are also
consistent with apparent phytoplankton growth rates estimated
from the dilution technique which ranged from 0.31 to 1.75 d !
(Teixeira and Figueiras, 2009). However, maybe due to aliasing
of short-term variability in their coarser observations, previous
studies in the region did not report a clear seasonal cycle in
phytoplankton growth rates. Seasonal trends in phytoplankton
growth, consistent with our findings, have been described in
several studies carried out in contrasting regions, mainly by using
the dilution technique (Kim et al., 2007; Gutiérrez-Rodriguez
et al., 2011; Lawrence and Menden-Deuer, 2012; Anderson and
Harvey, 2019).

The temporal coverage and resolution of our study allowed
interpreting our results within the conceptual framework of the
Critical Turbulence Hypothesis (CTH, Huisman et al., 1999a,b,
Figure 7A). According to the CTH, positive net phytoplankton
growth will occur when (1) the water column depth is shallower
than the critical depth, which is consistent with the Critical
Depth Hypothesis (CDH, Sverdrup, 1953), or (2) when turbulent
diffusivity in a mixed water column is lower than a critical value,
which causes the timescale for phytoplankton growth to be less
than the cell’s residence time in the portion of the water column
where net growth can be achieved. In this case, the depth of the
turbulent layer would be shallower than the mixed layer depth.

Huisman et al. (1999a) described these two distinct and
independent mechanisms by using simulations with variable
turbulent diffusivity and water column depth. Similar to the
CDH, they assumed that phytoplankton growth was only limited
by light, and also constant values in time and depth for turbulence
diffusivity and the phytoplankton loss term. In order to interpret
our results under this theoretical framework, we performed some
modifications on the original diagram (Figure 7A). First, we
used the mixed-layer depth instead of the water column depth,
to indicate the depth of the water column where density was
relatively vertically homogeneous. Second, we used the turbulent
layer depth, instead of turbulent diffusivity, to consider both
the magnitude and the vertical structure of turbulent mixing.
Finally, we used surface growth rate instead of depth-integrated
phytoplankton growth rates to represent phytoplankton growth
in the turbulent layer (Figure 7B). Consequently, phytoplankton
growth was always positive and its variability must be interpreted
in relative terms instead of positive or negative growth, as in the
original diagram.

In agreement with the first scenario proposed by the CTH,
our results showed that higher phytoplankton growth rates were
found for periods of shallow turbulent and mixed-layers during
spring-summer transitional and upwelling periods, whereas low
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FIGURE 7 | Theoretical framework of the Critical Turbulence Hypothesis (CTH). (A) Adaptation of original diagram (Figure 2 in Huisman et al., 1999a) where critical
conditions of the water column depth and turbulent diffusivity for phytoplankton bloom formation are indicated. Critical values must be interpreted for visual purposes
as an approximation. (B) Phytoplankton surface growth rates (uo) vs. the mixed-layer depth (MLD) and the turbulent layer depth (TLD). The curve of constant
differences between TLD and MLD of +4, +12, £20, and +28 are represented by a dotted line and of O (1:1 line) by a solid line. Logarithmic scales are used in
both axes.

layers. Only two samplings (31 and 37) showed the mixed-layer
to be much deeper (~ 20 m) than the turbulent layer, suggesting
that the mixed-layer was not actively mixing in <1 day. The
surface phytoplankton growth rate for sampling 31, 2 days
after the passage of Hurricane Ophelia, was relatively low (0.73

values were observed during periods of deep turbulent and
mixed-layers (fall-winter transitional and downwelling periods).
Unfortunately, our dataset was not suitable to assess the
second scenario described by Huisman et al. (1999a), as most
observations corresponded to shallow mixed- and turbulent
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d~1), whereas this rate was slightly higher during sampling
37 (1.0d™).

Due to the difficulty to quantify turbulence in the field,
previous studies using the CTH theoretical framework mainly
used hydrographic and atmospheric data to infer mixing
conditions in the upper layer, and its relationship with
phytoplankton growth in different regions as the North Atlantic
(Chiswell, 2011; Chiswell et al., 2013; Mignot et al., 2018), the
North West European Shelf (Wihsgott et al., 2019), the southwest
Pacific (Chiswell, 2011; Chiswell et al., 2013), the Western
Mediterranean Sea (Bernardello et al., 2012; Kessouri et al., 2018),
the Chukchi Sea (Lowry et al, 2018), and the Labrador Sea
(Marchese et al., 2019). The decrease in turbulence that could
explain the TLD being shallower than the MLD (second scenario
proposed for the CTH) has been associated with a reduction
in air-sea fluxes that generally precedes mixed-layer shoaling at
the end of winter (Taylor and Ferrari, 2011) and lowered wind
stress (Chiswell, 2011; Chiswell et al.,, 2013). Moreover, Brody
and Lozier (2014) proposed that the mixing-length scale of the
largest energy-containing eddies in the upper ocean is a better
predictor for bloom initiation than the decrease in mixed-layer
depth, the onset of positive heat fluxes, or the decrease in wind
strength. They also found that the shift from buoyancy-driven to
wind-driven mixing in late winter creates the decrease in mixing
length scale, and thus the conditions necessary for blooms to
begin (Brody and Lozier, 2015).

Only a limited number of studies have previously used
microstructure observations to investigate the relationship
between turbulence and phytoplankton activity and composition.
Among those, most studies were focused on analyzing the role
of mixing and nutrient supply as drivers of phytoplankton
community structure (Sharples et al., 2007, 2009; Machado et al.,
2014; Villamana et al., 2017, 2019). As far as we know only two
studies have used microturbulence observations to investigate
phytoplankton growth under the CTH framework. Huisman
et al. (2004) extended the CTH including competition theory,
to predict how changes in turbulent mixing affect competition
for light between buoyant and sinking phytoplankton species.
Consistent with the model prediction, results from a lake
experiment showed that changes in turbulent mixing caused
a dramatic shift in phytoplankton species composition. In
coherence with the CTH, Hopkins et al. (2021) used a
relatively short (2 weeks) period of high-frequency (sub-hourly)
observations collected from gliders in the Northwest European
Shelf to conclude that turbulent mixing, that mediate light
availability, was the key process governing phytoplankton growth
in spring.

Our study covers a full annual cycle which allows investigating
the coupling between turbulent mixing and phytoplankton
growth at different temporal scales. Our results show that
shallower mixed- and turbulent layers conditions were not
enough to ensure phytoplankton growth, as low phytoplankton
growth was also found under these circumstances. It is important
to note that, instead of following a single phytoplankton bloom
over time, our weekly approach involves sampling different
blooms at different stages of development. Previous studies in
this region have described that the spring-summer and fall

phytoplankton growth seasons are the result of a succession of
blooms triggered by the short-term variability in the upwelling
regime and runoff water pulses (Nogueira and Figueiras, 2005).
This is consistent with observations carried out in the North
Atlantic where fluctuations in the winter mixed-layer depth
triggered occasional short-live blooms (Mignot et al., 2018).
Using a wavelet transform analysis we showed that the coupling
between turbulent mixing and phytoplankton growth in this
system occurs not only over the seasonal cycle, but also at shorter
temporal scales. These results suggest that mixing could act as a
control factor on phytoplankton growth over the seasonal cycle,
but also being involved in the formation of occasional short-lived
phytoplankton blooms.

5. CONCLUSIONS

By analyzing a unique dataset combining weekly observations of
microstructure turbulence and phytoplankton growth collected
in the NW Iberian coastal upwelling we show that coupling
between turbulent mixing and phytoplankton growth occurs
over the seasonal cycle, but also at shorter temporal scales. In
agreement with the Critical Turbulence Hypothesis (Huisman
et al, 1999ab), our results indicate that higher values
of phytoplankton growth occurred during spring-summer
transitional and upwelling periods, when the depth of the
turbulent layer was shallower, whereas the opposite pattern
was observed during fall-winter transitional and downwelling
periods. However, shallower turbulent layers were not enough
to stimulate phytoplankton growth, as low growth rates were
observed during the same conditions. Despite our unprecedented
sampling effort, we are aware that a significant part of the
variability in this system was still not captured, which deterred
us from unveiling the mechanisms driving the coupling between
mixing and phytoplankton growth rates, specially at short
time-scales. Furthermore, longer observations will be needed
to discern whether the seasonal patterns described here are
characteristic of the study system or determined by the specific
investigated sampling period.

The Critical Turbulence Hypothesis assumes that
phytoplankton growth is exclusively limited by light and
that the phytoplankton loss rate is independent of depth and
constant through time. However, mixing conditions in the
water column influence light but also nutrient availability
for phytoplankton cells. Our results indicate that, in general,
higher phytoplankton growth occurs when light but also nitrate
availability was higher. Although our study was performed in
a nutrient-rich coastal upwelling ecosystem, previous studies
in the region have shown that phytoplankton is limited by
nitrogen during the summer, or at least it positively responds to
its addition (Martinez-Garcia et al., 2010). Moreover, although
phytoplankton blooms have traditionally been attributed to
changes in “bottom-up” environmental factors controlling
phytoplankton division rates, such as light and nutrients (e.g.,
Hunter-Cevera et al., 2016; Wihsgott et al., 2019), changes in
phytoplankton biomass are the result of the interplay between
phytoplankton division rates and the sum of all loss terms.
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Recent studies using satellite, in situ observations and modeling
approaches highlighted the relevance of variability in loss
rates (Behrenfeld, 2010; Boss and Behrenfeld, 2010; Behrenfeld
et al., 2013). The Disturbance Recovery Hypothesis proposed
by Behrenfeld and Boss (2014) argues that, contrary to the
CDH, bloom initiation takes place in the winter because deep
mixing dilutes phytoplankton cell density, thus reducing the
encounter rate between predator and prey. It is important
to note that our phytoplankton growth estimates, as derived
from short carbon uptake experiments, are close to gross
rates, and therefore do not reflect the balance between cell
division and loss rates. Moreover, the time step we used for
the wavelet analysis (8 days) is much longer than the time-
scale for phytoplankton growth (~1 day). Future studies
combing higher temporal resolution and longer observations,
together with modeling approaches will be required in order to
discern the mechanisms responsible for the coupling between
mixing and phytoplankton growth observed in this system,
and to evaluate the role of “bottom-up” and “top-down”
control factors.

Despite their small surface extension (1% of the global ocean)
eastern boundary upwelling systems account for 5% to the
global marine primary production (Carr, 2001) and 20% of
global fish catch (Chavez and Messié, 2009). One unresolved
question is these regions is the regulation of primary production.
Substantial variability in the ratio of nitrate supply to primary
production has been described (Messié et al., 2009), indicating
that regulators other than nitrate supply must be at play. In
agreement with previous studies (Hardman-Mountford et al.,
2003; Rossi et al., 2009; Fearon et al., 2020), our results indicate
that turbulent mixing may control phytoplankton growth at the
different time-scales involved in the physical-biological coupling
in these systems.

Anthropogenic global change perturbations have the potential
to affect phytoplankton dynamics, including the timing and
magnitude of blooms (e.g., Hunter-Cevera et al., 2016; Jena and
Narayana Pillai, 2020). Therefore, identifying the mechanisms
responsible for the formation of phytoplankton blooms,
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