Supplementary Information

Temporal variability of diazotroph community composition in the upwelling region off NW Iberia

Víctor Moreira-Coello^{1*}, Beatriz Mouriño-Carballido¹, Emilio Marañón¹, Ana Fernández-Carrera¹, Antonio Bode², Eva Sintes³, Jonathan P. Zehr⁴, Kendra Turk-Kubo⁴ and Marta M. Varela²

¹Facultade de Ciencias do Mar, Universidade de Vigo, Spain
²Instituto Español de Oceanografía, A Coruña, Spain
³Instituto Español de Oceanografía, Baleares, Spain
⁴Ocean Sciences Department, University of California, Santa Cruz, California, USA

*Correspondence:

Víctor Moreira-Coello vmoreira@uvigo.es

	Sample		Number of sequences
	Feb 2014	0 m	18540
	May 2015	40 m	15482
ng	May 2015	70 m	18115
elli		0 m	18417
мu	Nov 2015	40 m	18103
MO		70 m	18859
D		0 m	22106
	Dec 2015	40 m	20433
		70 m	20193
		0 m	28126
	May 2014	20 m	26237
gn		40 m	9534
Upwelliı		0 m	33925
	Apr 2015	40 m	39060
		70 m	25152
		0 m	17961
	Jun 2015	40 m	36019
		70 m	27050
		0 m	49612
on	Jul 2015	40 m	29774
cati		70 m	24011
elax		0 m	17520
Re	Sep 2015	40 m	20334
		70 m	27169
		Total	581732

Table S1. Number of sequences obtained per sample after quality filtering and before subsampling to minimum sequencing depth to compute relative abundances.

Table S2. Distance matrix between samples based on Bray-Curtis dissimilarity indices (%).

Feb 2014 May 2015 Nov 2015 Dec 2015 Jul 2015 Sep 2015 May 2014 Apr 2015 Jun 2015 40 m 70 m 0 m 0 m 40 m 70 m 0 m 20 m 40 m 0 m 40 m 70 m 0 m 40 m 70 m **U4 D1** D2 D3 **D**4 D5 **D6 D7 D8** D9 **R1 R2 R3 R4** R5 **R6** U1 **U2 U3** U5 U7 **U8** U9 U6 **D1** 0 **D2** 0.901 0 D3 0.877 0.902 0 0.633 0.951 **D**4 0.895 0 D5 0.803 0.887 0.925 0.875 0 0.810 0.763 0.749 0.726 **D6** 0.832 0 0.873 0.771 0.756 0.848 0.887 0.767 D7 0 **D8** 0.765 0.859 0.797 0.835 0.784 0.779 0.636 0 D9 0.771 0.799 0.794 0.833 0.849 0.722 0.582 0.542 0 **R1** 0.997 0.991 0.999 0.944 0.988 0.962 0.993 0.993 0.997 0 **R2** 0.902 $0.916 \quad 0.965 \quad 0.877 \quad 0.833 \quad 0.770 \quad 0.856 \quad 0.875 \quad 0.880$ 0.581 0 **R3** 0.956 $0.880 \quad 0.703 \quad 0.870 \quad 0.921 \quad 0.719 \quad 0.833 \quad 0.883 \quad 0.856$ 0.920 0.819 0 0.892 $0.862 \quad 0.766 \quad 0.859 \quad 0.828 \quad 0.703 \quad 0.755 \quad 0.780 \quad 0.749 \quad 0.916 \quad 0.780$ 0 R4 0.702 0.880 0.792 0.830 0.929 0.803 0.867 0.902 0.836 0.864 0.772 0.663 **R5** 0.965 0.748 0 **R6** 0.920 $0.923 \quad 0.771 \quad 0.890 \quad 0.886 \quad 0.832 \quad 0.852 \quad 0.835 \quad 0.867 \quad 0.731 \quad 0.611 \quad 0.682 \quad 0.792$ 0.673 0 U1 0.998 0.996 0.998 0.999 0.999 0.998 0.995 0.997 0.997 0.907 0.972 0.997 0.998 0.998 0.997 0 **U2** 0.984 $0.987 \quad 0.994 \quad 0.990 \quad 0.978 \quad 0.993 \quad 0.991 \quad 0.976 \quad 0.985 \quad 0.904 \quad 0.935 \quad 0.994 \quad 0.997 \quad 0.996 \quad 0.994 \quad 0.498$ 0 U3 0.998 0.998 0.995 0.999 1.000 0.999 0.994 0.991 0.991 0.878 0.959 0.997 0.998 0.999 0.506 0.995 0.545 0 U4 0.962 $0.933 \quad 0.962 \quad 0.929 \quad 0.992 \quad 0.963 \quad 0.935 \quad 0.966 \quad 0.955 \quad 0.312 \quad 0.493 \quad 0.887 \quad 0.867 \quad 0.858 \quad 0.689 \quad 0.997 \quad 0.999 \quad 0.99$ 0 0.824 0.939 U5 0.933 0.925 0.806 0.934 0.958 0.918 0.912 0.943 0.933 1.000 0.981 0.884 0.833 0.999 0.982 0.990 0.987 0 **U6** 0.985 $0.942 \quad 0.854 \quad 0.926 \quad 0.952 \quad 0.915 \quad 0.949 \quad 0.948 \quad 0.940 \quad 0.977 \quad 0.953 \quad 0.868 \quad 0.941 \quad 0.868 \quad 0.903 \quad 0.999 \quad 0.998 \quad 0.998 \quad 0.998 \quad 0.998 \quad 0.998 \quad 0.999 \quad 0.998 \quad 0.999 \quad 0.998 \quad 0.99$ 0.989 0.935 0 U7 0.882 0.889 0.851 0.866 0.796 0.739 0.878 0.855 0.894 0.909 0.752 0.736 0.571 0.807 0.767 0.998 0.992 0 0.996 0.842 0.973 0.965 **U8** 0.984 $0.971 \quad 0.931 \quad 0.948 \quad 0.984 \quad 0.935 \quad 0.981 \quad 0.947 \quad 0.948 \quad 0.964 \quad 0.930 \quad 0.849 \quad 0.891 \quad 0.894 \quad 0.922 \quad 0.997 \quad 0.990 \quad 0.996 \quad 0.959 \quad 0.988 \quad 0.830 \quad 0.913 \quad 0.91$ 0.867 0 U9 0.964 0.948 0.755 0.972 0.948 0.889 0.879 0.924 0.896 0.999 0.957 0.805 0.893 0.823 0.793 1.000 0.998 1.000 0.999 0.796 0.765 0.937 0.902 0

Table S3. Distribution of oligotypes across samples from UCYN-A *nifH* library. Number of sequences are provided for the six most abundant oligotypes: oligo3 ATTCTATTTCTT (100% nucleotide identity to KM012884), oligo1 ATCTCGCTTCTTT (100% identity to KM012889), oligo45 ATCTCGCTTTCTT (100% identity to LC013499), oligo46 ATTCTATTTCTTT (100% identity to KU183544), oligo103 ATTCTATTTCTG (99% identity to KU218784) and oligo4 ACTCTATTTCCCT (100% identity to LC013598). Sequence counts for the rest of oligotypes (Other UCYN-A oligotypes) were summed for each UCYN-A sublineage detected, and the number of oligotypes represented (*n*) are indicated at each column. 'UCYN-A other' includes oligotypes that did not fall into the sublineages defined hitherto¹⁴, however, because they are low in frequency (<80 read counts each), we have not created new clusters for them.

Sample		UCYN-A1		UCYN-A2		UCYN-A4	Other UCYN-A oligotypes					
		oligo1	oligo45	oligo3	oligo46	oligo103	oligo4	A1 <i>n</i> =19	A2 n=16	A4 n=3	A other n=3	
Downwelling	Feb 2014	0 m	0	0	32	0	1	0	0	2	0	0
	May 2015	40 m	0	0	183	0	7	0	0	2	0	0
		0 m	1858	0	0	0	0	0	76	0	0	0
	Nov 2015	40 m	363	0	0	0	0	0	17	0	0	0
		70 m	1024	0	1	0	0	0	40	0	0	0
	Dec 2015	0 m	64	0	83	0	2	0	4	9	0	0
		40 m	56	1	81	3	1	0	4	4	0	0
		70 m	0	0	36	0	2	12	0	3	1	0
1												
Relaxation		0 m	10300	2126	16879	1755	401	628	2203	1804	248	151
	Jul 2015	40 m	493	73	10729	55	230	309	76	407	32	2
		70 m	151	4	1565	5	43	586	24	134	42	3
		0 m	229	17	1875	26	52	0	17	73	0	3
	Sep 2015	40 m	1246	66	2241	92	37	0	143	89	0	5
		70 m	677	112	6562	97	178	30	115	212	7	14
Upwelling		0	0	0	-	0	0	0	0	0	0	0
	May 2014	0 m	0	0	/	0	0	0	0	0	0	0
		20 m	0	0	4	0	1	0	0	0	0	0
		0 m	0	0	20391	0	557	0	l	436	0	0
	Apr 2015	40 m	0	0	2	0	0	0	0	0	0	0
		70 m	691	0	0	0	0	0	34	0	0	0
	Jun 2015	0 m	0	0	2179	0	70	0	0	41	0	0
		40 m	0	0	1055	0	28	0	0	21	0	0
	Total		17152	2399	63905	2033	1610	1565	2754	3237	330	178

Figure S1. Rarefaction curves of all samples during (**A**) downwelling, (**B**) upwelling, and (**C**) relaxation conditions based on the number of observed OTUs clustered at 92% nucleotide identity cut-off.

Figure S2. Species accumulation curve constructed using the Ugland's method⁷⁰. Number of OTUs observed clustered at 92% nucleotide identity for the 24 *nifH* DNA samples collected in the region. Shaded area represents standard deviation.

Figure S3. Number of OTUs observed, Chao1 richness estimator⁶⁸, and Shannon diversity index⁶⁹ at 92% nucleotide identity for subsamples (9534 sequences each) during **(A)** downwelling, **(B)** upwelling, and **(C)** relaxation conditions.

Figure S4. Evenness of the OTUs distribution in the *nifH* library. Number of sequences for each OTU at 92% of nucleotide identity.

Figure S5. Vertical distribution of temperature (T), salinity (Sal), density (sigma-t), chlorophyll *a* concentration (Chl *a*) and squared Brunt Väisälä frequency (N²). The black line in the sigma-t panel indicates the mixed layer depth, estimated from an increase in water column density of 0.125 kg m⁻³ relative to surface values. Letters on top panel indicate the hydrographic condition sampled on each cruise (D, downwelling; U, upwelling; and R, relaxation). Chlorophyll *a* concentration was calculated from the calibrated fluorescence sensor (see section Materials and Methods in Moreira-Coello *et al.*⁴⁸).

Figure S6. Shannon entropy analysis showing nucleotide positions with highest variability in the data set of UCYN-A *nifH* sequences. Output plot from the oligotyping pipeline (merenlab.org/software/oligotyping/; Eren *et al.*¹⁵).